Como resolver equações lineares do Colégio ÁlgebraQuando confrontados com equações lineares , pela primeira vez , muitas pessoas se sentem sobrecarregados e confusos com a complexidade da mistura de números e letras para resolver as equações . Com algumas orientações simples , no entanto , você pode aprender estas habilidades fundamentais usadas na álgebra faculdade e matemática superior . Os métodos utilizados para resolver equações lineares de uma variável e duas variáveis em álgebra faculdade são bastante simple.Things você precisaCalculadora ( opcional) Mostrar MoreInstructions uma Variável equações lineares 1 Recorde relações inversas , tal como 1 e -1 , e 1/3 e 3 , para resolver equações lineares de uma variável . As soluções exigem usando as relações inversas de adição e subtração e multiplicação e divisão. Isolar a variável "x" de um lado da equação. Se x = y , então x + a = a + y . Com base nesta lógica , utilizam inversos para mover os valores a partir de um lado de uma equação para o outro lado da equação Para isolar x usando o inverso da subtracção na equação x - . 5 = 8 , adicionar o inverso de -5 , que é 5 , para ambos os lados da equação . O resultado é : . X - 5 + 5 = 8 + 5 A solução é : x = 13 Para usar o inverso da adição na equação x + 9 = 12 para isolar x , subtrair o inverso . 9 a partir de ambos os lados da equação . A equação resultante é: x + 9-9 = 12-9 Depois de subtrair 9 de ambos os lados da equação , você vai achar que x = 3 Usando o inverso da divisão na equação (1 /. . 2 ) x = 10 para isolar x requer multiplicando o inverso de 1/2 de ambos os lados da equação . A equação resultante é : ( 1/2 ) ( 2 ) = 10 ( 2 ) . Multiplicando ambos os lados da equação por 2 revela que x = 20 Para isolar x usando o inverso da multiplicação na equação 4x = 8 , dividir ambos os lados da equação por 4 a equação resultante é . . : 4x /4 = 8/4 . A solução é: . X = 2 Verifique a solução. Ligue a solução para a equação original para verificar se o valor está correto. Se a equação original é x - 5 = 8 e você descobriu que o valor de x é 13, por exemplo, em seguida, verifique a solução simplesmente usando o valor 13 em vez de x na equação original . A equação torna-se então 13-5 = 8 ou 8 = 8, que é a resposta correta Escolha uma variável para eliminar em uma equação linear de duas variáveis , como 4x - 10a = 32 e 6x + 4y = 10 para eliminar "x ", multiplicar as equações por múltiplos comuns para obter valores iguais, mas opostos x: . 3 ( 4x - 10a = 32 ) e 2 ( 6x + 4v = 10 ) . O exemplo , em seguida, ficar assim: . 12x - 30y = 96 e 12x - 8y = -20 Adicione as equações em conjunto para eliminar x . Um exemplo é: 12x - 30y = 96 - 12x - 8y = -20 _____________ - 38y = 76 Resolva y na equação - 38y = 76 o processo é: . -38y/38 = 76/38 -y = 2 -y/-1 = 2/-1 y = -2 Ligue o valor de y nas equações originais , e encontrar o valor de x . A primeira equação original é 4x - 10a = 32 , e o processo de solução é : 4x - 10 ( -2 ) = 32 4x + 20 = 32 4x + 20-20 = 32-20 4x = 12 4x /4 = 12/4 x = 3 A segundo equação original é 6x + 4y = 10 Seu processo de solução é: 6x + 4 ( -2 ) = 10 6x - 8 = 10 6x - . - 8 + 8 = 10 + 8 6x = 18 6x /6 = 18/6 x = 3 Verificação a soluções y = -2 e x = 3, para as equações originais , 4x - 10a = 32 e 6x + 4v = 10 o processo para a primeira equação é a seguinte: . 4 ( 3 ) - 10 ( -2 ) = 32 12 +20 = 32 32 = 32 o processo para a segunda equação é: 6 (3) + 4 (-2) = 10 18-8 = 10 10 = 10 duas variáveis equações lineares pode ter uma solução , não há solução ou várias soluções . É por isso que é muito importante para verificar soluções nas equações originais . Faculdade
|
Copyright © https://www.educacao.win - Todos os direitos reservados |