Como calcular Matrizesmatrizes matemáticas são uma disposição de números que residem em linhas e colunas , e podem ser usados em uma variedade de arranjos , tais como grelhas de dois-por - dois ou três grelhas de -três . Matrizes permitem calcular equações de física avançados, figuras geométricas , rastreamento funções lineares e outros análise numérica . Cálculo das matrizes é simples , desde que você entender o padrão utilizado pela computação . Uma vez que o padrão é conhecido , envolve cálculo simples multiplicação, subtração e adição. A resposta final é chamado determinante . Instruçõesdois -por-dois Grade 1 Organizar a grade com duas colunas e duas linhas por coluna. Se você rotular as entradas consecutivamente como a, b, c e d , a matriz seria algo como: ab cd Construa a fórmula usando o padrão de dois -por-dois matriz . Essencialmente, você está subtraindo o produto das diagonais : Determinante = ad - cb Lembre-se de quando as variáveis são colocadas lado a lado , eles se multiplicam , assim que a fórmula também pode ser interpretado como: a * d - c * b Resolva o determinante , ligando em seus números. Suponhamos que as variáveis a, b , c e d foram 1 , 2 , 3 e 4 , respectivamente : = Determinante ( 1 x 4 ) - ( 2 x 3 ) = Determinante 4 - Determinante = -2 Organizar a grade com três colunas e três linhas por coluna. Se você escreveu o nome das entradas consecutivamente como a, b, c , d, e, f , g, h e i , a matriz seria algo como: abc def ghi Construa a fórmula utilizando a três por três matriz padrão : Determinante = a ( ei - hf ) - d (bi - hc ) + g ( bf - ef ) Lembre-se que as variáveis colocadas lado -a-lado são multiplicados . Portanto , esta fórmula pode também ser expressa como : [ machado ( ( exi ) - ( HXF ) ) ] - [ dx ( ( BXI ) - ( HXC ) ) ] + [ gx ( ( bxf ) - ( exc ) ) ] Apesar de não ser imediatamente óbvios , você ainda se multiplicam diagonais , mas há três seções , cada uma multiplicada pela primeira entrada da linha correspondente que não está incluída nas diagonais . Na primeira seção , um é multiplicado pelo produto da ei e hf , ambas as diagonais e nem na mesma linha como a. Do mesmo modo , d é multiplicado pelo produto de bi e ap , e g é multiplicado pelo produto de bf e CE . As três seções ou são subtraídos ou somados, dependendo da posição . Resolva o determinante , ligando em seus números. Suponhamos que as variáveis a, b , c , d , e, f , g , h e i é 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 e 9 , respectivamente : = Determinante [ ,"1 x ( ( 5 x 9 ) - ( 8 x 6 ) ) ] - [ 4 x ( ( 2 x 9 ) - ( 8 x 3 ) ) ] + [ 7 x ( ( 2 x 6 ) - ( 5 x 3 ) ) ] = Determinante [ 1 x (45 - 48) ] - [ 4 x ( 18 - 24 ) ] + [ 7 x ( 12 - 15 ) ] = determinantes [ 1 x -3 ] - [ 4 x -6 ] + [ 7 x -3 ] = Determinante [ -3 - ( -24 ) + ( -21 ) ] = 0 Determinante Anterior: Como calcular fracionários abundâncias Outras Áreas do Ensino Superior
|
Copyright © https://www.educacao.win - Todos os direitos reservados |