Como encontrar o centro de massa de um ParabolaEncontrar o centro de massa de uma parábola é uma forma abreviada de dizer encontrar o centro de massa de uma seção parabólica de um objeto com densidade uniforme . Por conveniência , esta secção parabólica é geralmente colocado sobre um plano xy , de modo que o seu eixo de simetria encontra-se no eixo y e o seu vértice se encontra na origem . Devido à simetria, você já sabe que a coordenada x será 0 ; você precisa encontrar a coordenada y . Você encontrar o centro de massa na direção y , usando as YCM fórmula = (1 /M) dm S y, onde YCM é a coordenada y do centro de massa , M é a massa total do objeto e S representa o sinal de integral e dm é a derivada em relação à massa . Você deve saber como integrar a ver esses problemas. Instruções1 Escreva a função y = kx ^ 2 para descrever a parábola. Encontre k usando as informações sobre a altura eo raio da seção parabólica. Reescreva a função com este novo valor substituído em k para Exemplo: . Encontre o centro de massa de uma tigela corte uniforme em uma seção parabólica. A altura da taça é de 0,1 m e o seu raio é de 0,1 m . ( 0.1 , 0.1 ), é um ponto na bacia . Ligue para 0,1 x e 0,1 por y para resolver para k. 0,1 = k (0,1) ^ 2 0,1 = k * 0,01 k = 10 y = 10x ^ 2 Altere y ( x) x (y) , reorganizando a equação até que x é , por si só , no lado esquerdo . Isso é porque você está integrando mais de y, no sentido vertical , de modo que você precisa saber as dimensões horizontais de cada fatia em termos de x . Isto é o mesmo que dA, o derivado com respeito à área Exemplo : . Y = 10x ^ 2 0.1y = x ^ 2 x = + e - sqrt ( 0.1y ) Porque a equação se divide em duas partes idênticas , reescrevê-la como : x = 2 * sqrt ( 0.1y ) dA = 2 * sqrt ( 0.1y ) dy Configure o integral para a coordenada y . Porque você teve fatias de zona com uma densidade uniforme, a dm pode ser reescrita como D * dA, onde D é a densidade, e dA = 2 * sqrt ( 0.1y ) dy Exemplo: . YCM = (1 /M) S y dm YCM = (1 /M) 2D * S y * sqrt ( 0.1y ) dy Os limites de integração são 0 e 0,1 ( a altura da seção). Reescreva M, a massa , enquanto parte integrante, usando as mesmas informações como para a integral anterior, mas deixando de fora o extra * y . Exemplo: M = 2D * S sqrt ( 0.1y ) dy os limites de integração são 0 e 0,1 ( a altura da seção) Faça uma relação dos dois integrais para ter em conta a 1 /M. resolver por integração Exemplo : . YCM = 2D * S * y sqrt ( 0.1y ) dy /2D * S sqrt ( 0.1y ) dy sqrt ( 0,1) é uma constante e pode ser trazido de fora da integral, por isso cancela , assim como o 2 eo D. y * sqrt (y ) = y ^ 1 * y ^ 0,5 = y ^ 1.5 YCM = S ^ y 1,5 dy /S ^ y 0,5 dy YCM = 0.4y ^ 2,5 /( 2/3) y ^ 1,5 = 0.6y Avaliar 0-0,1 : YCM = 0,06-0 = 0,06 Faculdade
|
Copyright © https://www.educacao.win - Todos os direitos reservados |