Como combinar os termos semelhantes com símbolos diferentes

A prazo, a unidade básica de uma expressão algébrica , é composto de duas partes: um número e uma ou mais variáveis ​​. Também pode ter um expoente , embora um expoente não é um componente necessário do termo . Como os termos são termos que têm as mesmas variáveis ​​e expoentes . Eles podem ter diferentes coeficientes numéricos . Por exemplo, 1-A e 45-A ^ b ^ b são termos semelhantes ; 1a ^ b e 45AB ^ 2 não são como os termos. Apenas como termos podem ser combinados . Lembre-se que um sinal de menos à esquerda de um termo pertence a esse termo. Na expressão 2x- 3y +5 y os termos são 2x, 3a e 5a - . O sinal negativo nos diz que 3a é um termo negativo. Instruções
1

Adicionar como termos com o mesmo sinal , adicionando os coeficientes numéricos e manter esse sinal :

ab ^ 2 + 2ab ^ 2 = 3ab ^ 2

- 2xy - 3xy = - 5xy

-4a + ( -6a) = -10a
2

Adicione como termos com sinais opostos , subtraindo o menor prazo do maior prazo. Mantenha o sinal do maior termo :

-5a + a = -4a

7y + ( - 3a) = 4y
3

Subtrair um negativo termo , seguindo a regra formal - (-a ) = a :

2x -( 3x) = 2x + 3x = 5x

3 - ( -6) = 3 +6 = 9

- 6y - ( - 3a) = - 6y +3 y = - 3a
4

Combine uma longa série de termos , agrupando os termos semelhantes em conjunto para facilitar o cálculo :

6a- 7b -3a +4 b = 6a -3a -7b +4 b = 3a- 3b
5

Lembre-se que um termo vezes negativo um termo negativo produz um termo positivo . Um termo vezes negativo um termo positivo produz um termo negativo .
6

Multiply ( e dividir) como um acordo com um número ímpar de sinais negativos , multiplicando o coeficiente numérico e e colocando em um sinal negativo. Assim , o resultado é negativo :

- 7y * - 3a - 2a * = - 42y

Com um número par de sinais negativos , o resultado é positivo :

- . 7y * - 3a = 21a